TO APPEAR: FTCS23

AD-A266 931
R IAR

Relaxing Consistency in Recoverable Distributed Shared Memory \
Bob Janssens and W. Kent Fuchs ,‘\C
Center for Reliable and High-Performance Computing 0 E—C‘ 12
Coordinated Science Laboratory e\ 16 03
University of Illinois (L
Urbana, IL 61801 E

Abstract

Relaxed memory consistency models tolerate increased
memory access latency in both hardware and software dis-
tribused shared memory systems. In recoverable systems,
relaxing consistency has the added benefit of reducing the
number of checkpoints needed to avoid rollback propa-
gation. In this paper, we introduce new checkpointing
algorithms that take advantage of relaxed consistency to
reduce the performance overhead of checkpointing. We
also introduce a scheme based on lazy relaxed consistency,
that reduces both checkpointing overhead and the over-
head of awoiding error propagation in systems with error
latency. We use multiprocessor address traces to evalu-
ate the relaxed consistency approach to checkpointing with
distributed shared memory.

1 Introduction

Several parallel architectures use distributed shared
memory (o avoid the programming complexities of
message passing. A distinguishing feature of these ar-
chitectures is the distribution of memory across many pro-
cessing nodes connected by an extensive network, resulting
in high access latency for non-local data. The implementa-
tion of such a distributed shared memory can be in hardware
and/or software. Hardware distributed shared memory
systems have been developed in industry and academia
[34]. All-software implementations that can be used on ex-
isting hardware, including networked workstations, have
also been developed by researchers [8, 11, 22, 23). To re-
duce the performance impact of remote memory access
latency in distributed shared memory systems, relaxed

This rescarch was supponied in part by the National Aeronautics
and Space Administratira (NASA) under Grant NASA NAG 1613, in
cooperation with the lllinois Computer Laborstory for Acrospace Systems
and Software (ICLASS), and by the Office of Naval Research under
contract NO0014-91.J-1283.

98 ¢ 12 vo7

memory cousistency models have recently been developed
[1, 7, 12, 15). These models relax the traditional sequen-
tial consistency model to allow copies of data on separate
processors to be temporarily inconsistent during the com-
putation.

In this paper we show that, in shared-memory computer
systems which require recoverability from transient node
errors, relaxing consistency has the added benefit of de-
creasing the performance overhead of independent check-
pointing and rollback recovery. We present checkpointing
algorithms that take advantage of the conditions for relaxed
consistency to reduce the minimum number of checkpoints
required for correct operation. We also show how the
checkpointing scheme reduces the cost of avoiding error
propagation in systems with lazy relaxed consistency. We
use multiprocessor address traces to evaluate the techniques
by trace-driven simulation.

2 Background and Previous Work

2.1 Checkpointing in shared memory multipro-
CessSors

In paraliel systems, to ensure a correct global state, a
rollback of one process often necessitates the rollback of
other processes that have communicated with it. Schemes
where processors globally coordinate checkpointing and
roliback to limit this rollback propagation orm well
where checkpoint intervals are relatively long A8t dwmivbe+or
come more expensive with shorter intervals. Other schemes ————
that keep multiple checkpoints per processor to handle ! J
rollback propagation incur the additional overhead of de- {
pendency tracking. A more extensive discussion of the ‘4 (
tradeoffs involved in the design of recoverable distributed - .
systems can be found in the literature (13, 19, 31].

In shared-memory Systems, processors communicate
through shared variables rather than messages. Lee and;
Shin proposed hardware recovery blocks for recovery in 8 ——vo .

owanavility Code

. Avail and/or
Dist Special

93- 1 5988 ’

-cae.

%_

-/

shared-memory multiprocessor [21]. In their approach, the
detection of rollback propagation necessitates a complete
restart of the whole task. Ahmed et al. used a flagged co-
ordinated scheme to reduce the number of processors that
need to participate in cache-based recovery [2]. Banatre
and Joubert proposed a recoverable multiprocessor that
constructs global checkpoints with the help of a central-
ized stable memory device supporting atomic transactions
{3]. Tam and Hsu have also worked on reliable distributed
shared memory, concentrating on recovering the page table
on a processor that has failed [29).

In distributed shared memory systems, synchronized
global checkpointing is more costly than in traditional
shared memory systems. To avoid coordination over-
head, Wu and Fuchs used independent checkpointing at
every communication between processors for cache-based
recovery in bus-based multiprocessors (32] and for recov-
erable shared virtual memory [33). Stumm and Zhou also
used a similar communication-induced scheme in their fault
tolerant distributed shared memory [27]. In the Sequoia
multiprocessor [6], only data that have been checkpointed
can be shared between processors. The schemes pro-
posed in this paper use a similar communication-induced
approach, but avoid checkpointing at every processor in-
teraction,

Since checkpointing frequency with communication-
induced schemes is typically high, they are suited for use
with low-overhead state saving methods, based on the cache
[2, 32) or virtual memory [9] mechanism. Under these
methods, checkpointing usually consists of saving some
registers and updating a counter. 'We assume that such a
checkpoint can be committed immediately after a processor
event, without the possibility of any intervening error. Un-
less assisted by a reconfiguration mechanism, our schemes
only allow recovery from a single transient error in one
of the processing nodes. The types of errors that can be
handled depend on the exact state saving method used; the
cache-based schemes are restricted to transient processor
errors, while the virtual memory schemes can potentially
recover from a crash of a complete processing node.

2.2 Sequential consistency and checkpointing

Previous work on recovery in shared-memory com-
puter systems has assumed a sequential consistency model,
which guarantees that all memory accesses appear to exe-
cute atomically and in program order (20, 24]. The model
was developed to reflect the programmer’s intuitive under-
standing of the correct execution of a multiprocessor. If se-
quential consistency is not maintained, synchronization and
mutual exclusion using loads and stores to lock variables
will not necessarily function correctly. Lamport defined
sequential congistency as follows [20):

[A system is sequentially consistent if] the resuit
of any execution is the same as if the operations of
all the processors were executed in some sequen-
tial order, and the operations of each individual
processor appear in this sequence in the order
specified by its program.

During normal execution, sequential consistency can be
guaranteed by requiring processors to issue memory
accesses in program order, and to wait until the result of a
write access is made known to all processors before issuing
any new accesses. Many commercial shared memory mul-
tiprocessors use processor consistency, a slightly more
relaxed consistency model [16, 24]. The programmer’s
views under processor consistency and sequential consis-
tency are similar, but processor consistency allows the hard-
ware to pipeline memory accesses.

If checkpoints are taken at random times, a rollback on
a recoverable system may violate sequential consistency.
In the example of Figure 1, processor A sets variable x =
0, followed by x = 1 some time later. Then processor B
reads x twice, storing the results in 2 and b. An error is
detected by processor A in the time between the two reads
on processor B, causing a rollback to the checkpoint taken
before the second write. On processor B, the second read
of x occurs before the rolled-back processor A reassigns
x = 1. The outcome is that a = 1 and b = 0, which, if
all operations were executed in sequential order, is only
possible if the assignment x = 1 came before x = 0. This
is not the order specified by the program on processor A,
therefore sequential consistency is violated. If x were a
lock variable, processor B would be able to acquire the
lock, even though it was actually reserved by processor A.

To avoid the situation described, processor B could
follow processor A in rolling back to a mutually consistent
state. This strategy, however, would require coordination
between processors during checkpointing. To avoid the
overhead of coordination, a processor should not roll back
past a write to a value that has been read by another pro-
cessor. A processor could take a checkpoint immediately

X=0 X =1
A 1 :n 1 :;
u

checkpoint error detected

B a=1

] -
amx bax °=0

Figure 1: A violation of sequential consistency caused by
a rollback past the read of a shared variable by a remote
Processor,

after every write, but then non-shared data would be unnec-
essarily checkpointed. A better strategy is to checkpoint the
writer of a data item immediately after servicing a request
from a remote processor to read that item [32, 33]. During
recovery from an error, all reads from other processors must
be delayed until the affected processor has rolled back to a
correct state.

The overhead for this checkpointing scheme on a se-
quentially consistent system is high. A checkpoint is taken
on every instance of communication between processots,
leading to an unavoidably high checkpoint frequency [17].
If a read request from a remote processor occurs during
rollback, the requesting processor needs to stall until the
sending processor has completed recovery.

2.3 Relaxed consistency

Recently it has become clear that strong consistency re-
quirements prevent systems designers from making certain
performance optimizations. By using a more relaxed con-
sistency model, accesses t0 remote memory locations ca.”
be delayed and reordered, increasing performance. One
relaxed consistency mode: is weak consistency, where the
following conditions hold (1, 12, 24]:

1. accesses to synchronization variables are sequentially
consistent,

2. no access to a synchronization variable is issued in a
processor before all previous data accesses have been
performed,

3. noaccess to global data is issued by a processor before
a previous access to a synchronizing variable has been
performed.

It is difficult to write and debug parallel programs that
conform to the weak consistency model without addi-
tional constraints. However, Adve and Hill showed that
a weakly consistent system appears sequentially consistent
to a program as long as the program contains no data races
and all synchronization accesses are visible to the memory
system [1]. A data race occurs when two data operations
on different processors access the same memory location,
they are not both reads, and they are not ordered by a
synchronization operation. It can be shown that for other
relaxed consistency models, such as release consistency
[15), similar conditions of visible synchronization accesses
and data-race-free execution provide a sequentially consis-
tent interface to the program.

Hardware that uses relaxed consistency has been devel-
oped by several researchers and implemented in the Stan-
ford DASH multiprocessor prototype (15]. Many soft-
ware distributed shared memory systems allow a user-
controlled relaxing of sequential consistency {8, 11, 23].

Borrmann and Herdieckerhoff first proposed lazy relaxed
consistency to reduce the number of messages sent be-
tween processors in a software distributed shared memory
system [7]. Keleher er al. showed with simulations that
the performance of release consistency can be improved by
implementing lazy release consistency [18].

No known previous work has taken advantage of gen-
eral relaxed consistency to reduce the performance impact
of checkpointing and rollback recovery. Some less gen-
eral and more restrictive consistency models have been
used in database and transaction processing applications.
An extension to the Mirage shared virtual memory system,
which uses a time-based coherence approach, has been
proposed to make it recoverable [14]. The Sequoia mul-
tiprocessor [6], designed for transaction processing, uses
a model similar to weak consistency to decrease check-
pointing frequency. The current state is kept in the cache,
which is flushed to main memory upon every acquire and
release of a lock. The caches are not kept consistent be-
tween lock accesses. Although it can be accessed by user
processes, Sequoia’s shared memory is intended mainly for
use by the operating system kemel.

3 Checkpointing with Relaxed Consistency

The conditions that allow a relaxed consistency system
to appear sequentially consistent also allow a reduction in
the number of checkpoints taken for recovery. If a program
is data-race-free, a read of a data value by a remote pro-
cessor is always separated from the write of that value by
a write and subsequent read by the remote processor of a
synchronization variable. Figure 2 presents an example,
where a read of data item x by processor B is separated
from the last write to that item on processor A by a write
by processor A and read by processor B of synchronization
variable s. A processor is guaranteed to never roll back
past the write of a data item that is subsequently read by
another processor if it can not roll back past the write to the
intervening synchronization variable.

We present two schemes for low-overhead check-

W(x) W(s) checkpoint RC1
A] {11 n
checkpoint RC2
sync
B
1
R(s) R(x)

Figure 2: Checkpointing under the data-race-free model.

pointing with relaxed consistency, differing in the place-
ment of checkpoints. Though the schemes are designed
to work most efficiently with state-saving methods based
on the virtual memory or cache (described in Section 2.1),
they can be used with any other method. Rollback occurs
completely independently on the affected processor; the
other processors continue with the computation.

The first scheme, hereafter called RC1, uses a write-
invalidate coherence protocol, where a write to a shared
data item causes invalidation of all copies of that item on
other processors. To guarantee correct rollback, the source
processor is checkpointed only on reads by remote pro-
cessors of synchronization variables. In the example of
Figure 2, a checkpoint is taken after the read of s by pro-
cessor B. This ensures that processor A will never roll back
past the last write to data item x. Scheme RC1 reduces
unnecessary checkpoints by checkpointing only writes to
synchronization variables that are subsequently used to or-
der accesses on other processors.

An alternative scheme is RC2. Here a checkpoint is
taken immediately after every write to a synchronization
variable, even if it is not read on another processor before
the next write. Therefore the number of required check-
points might be higher than in RC1. However, RC2 can be
applied write-update protocols, which broadcast the new
values of updated shared data. In Figure 2, scheme RC2
requires a checkpoint after the write to synchronization
variable s on processor A, ensuring that processor A will
never roll back past the last write to data item x.

Whether scheme RC1 or scheme RC2 is used, accesses
to shared data variables never need to be checkpointed.
Therefore the checkpointing overhead is reduced. Further
decrease in checkpointing overhead can be accomplished
by avoiding the use of shared memory for synchroni-
zation. Especially in software distributed shared memory
systems, synchronization through shared memory is expen-
sive. Many systems therefore implement synchronization
primitives through message-passing [7, 11]. Contention
for locks, and the resuiting invalidations and data transfer,
can then be avoided. For these systems we propose scheme

computation 1 L g
read request
]
state ' §
validation \ data sont ®
chackpoint ' -
computation l I

Figure 3: State validation and checkpointing during the
handling of a remote read request.

RC3, which checkpoints immediately after the use of these
synchronization primitives. A checkpoint is taken imme-
diately after both the setting and unsetting of a lock. A
checkpoint also needs to be taken by each participant im-
mediately after passing a barrier used for synchronizing
multiple processes.

4 Handling Error Latency with Lazy
Relaxed Consistency

4.1 Error latency and error propagation

Work in the area of error recovery often assumes that
errors are detected immediately and cause the affected pro-
cessor to stop [2, 19, 26, 31, 33]. In practice, the overhead
of exror detection may be reduced by allowing some latency
between an error and its detection. Even a few cycles of
detection latency can dramatically improve performance,
by taking error detection hardware out of the critical path
[30]. If an error is still undetected when a checkpoint is
taken, the checkpoint is corrupted. Wu er al. proposed
a two-phase checkpointing scheme to solve this problem
[32]. This solution, however, does not avoid the propaga-
tion of an error when an incorrect value is supplied to a
remote processor before the error is detected.

To avoid propagating errors it is necessary to ensure
the validity of data before supplying them to any other
processor. Assuming the error latency is bounded, this
validation could be accomplished by various methods. A
local mechanism in the processor could ensure that the
requested data item has not been updated for a time period
equal to the error latency. For instance, the processor could
cease computation and wait for a time period equal to the
error latency before supplying the value. This method is
very costly when error latency is high, and is therefore
best suited for systems with low-latency error detection
hardware [30].

Validation is needed both before the taking of every
checkpoint, and before a response to a read request. In a
sequentially consistent system, these events always occur
together, leading to the order represented in Figure 3. Com-
putation ceases as soon as the read request is received. Then
validation occurs to prevent both the propagation of errors
in servicing the request and the corruption of the following
checkpoint. Then the remote read request is serviced, fol-
lowed by the immediate commit of the checkpoint. The -
checkpointing process may have been initiated earlier, but
the checkpoint has to commit atomically with the sending
of the data before restarting computation.

With scheme RCI, checkpointing occurs only on syn-
chronization reads from remote processors. However, vali-

dation still needs to occur as often as under sequential con-
sistency: onevery read from aremote processor. Therefore,
the performance advantage of using relaxed consistency is
reduced. With scheme RC2 and a write-invalidate policy,
the validation overhead is even greater. In this case, com-
munication and checkpointing occur at different times, and
both need validation.

The performance overhead of state validation is exacer-
bated by the need for the processor that issued a remote read
request to stall during the validation period, waiting for the
requested data to be released by the sender. Furthermore,
if an error detected during validation causes a roliback, the
requesting processor may not continue until the rollback
completes.

4.2 Lazy Relaxed Consistency

Relaxing consistency alone does not decrease the over-
head of avoiding error propagation. A technique called
lazy relaxed consistency, however, minimizes processor
communication, thereby reducing the number of required
computation state validations. With lazy relaxed consis-
tency, propagation of newly written values is postponed
until absolutely necessary [7]). As long as synchronization
writes are used to order accesses, it is only necessary to up-
date other processors with the results of all previous writes
when a synchronization variable is written [1]. This de-
layed propagation strategy increases the performance of
software distributed shared memory by reducing both the
number of messages and the amount of data exchanged
[18].

Figure 4 presents an example of the messages exchanged
under lazy relaxed consistency. Each dashed arrow repre-
sents an update to a synchronization variable and a resulting
write propagation. For simplicity only one variable, x, is
written on processor A. The thin arrows indicate the value
of x that would be returned by a read on the processor. Pro-
cessor B only sees the updates to x after a write propagation

from processor A.

Xx=0 | X=1 l X=2

ﬁ-!

X=0 X=1 X=2

Figure 4. Values seen on processors using lazy relaxed
consistency.

computation T
__ 1 Lsyne write
1
state : 15
" . o
validation ! remote update
- —
l l checkpoint
computation

Figure 5: State validation and checkpointing during a syn-
chronization write and remote update.

Lazy relaxed consistency is convenient for rollback re-
covery with error latency since error propagation can be
constrained to write propagations. To achieve this, we de-
scribe scheme LRC2. A checkpoint is taken after every
write to a synchronization variable, as in scheme RC2.
A write-update coherence protocol is used where all the
updates are performed in one message after a write to a
synchronization variable. Errors can be propagated only
during these updates. In the example of Figure 4 an error
on processor A at point p can not propagate to processor B
until the next write to a synchronization variable. There-
fore the error at p will never propagate to a read at point
r.

In scheme LRC2, a state validation and checkpoint occur
immediately after a write to a synchronization variable.
Figure 5 explains the sequence of events. After a synchro-
nization write, computation stops and the computation state
is validated. Then a remote update message is sent to all
other processors. After the send, a checkpoint is taken to
prevent the processor from a subsequent rollback past the
remote update.

Lazy relaxed consistency protocols already send
messages to update data at every synchronization points, so
synchronization by message-passing can be easily imple-
mented. Scheme LRC3, similar to RC3, can then be used.
Checkpoints occur in the same instances as in scheme RC3.
Every checkpoint is accompanied by a preceding state val-
idation.

5 Simulation Results and Implementation
Issues

The total overhead of the proposed schemes depends
on the number of necessary checkpoints, the overhead per
checkpoint, the number of required computation state val-
idations, and the overhead per validation. Table 1 summa-
rizes the various schemes, and gives expressions for their
overhead, both with and without error latency.

We evaluate the alternative checkpointing schemes with

Table 1: Overhead of proposed schemes.

scheme when necessary overhead
" checkpoints | validations no error latency | error latency
SC all reads by remote | all reads by remote rr+C rrx(V +0)
PrOCEssors Processors
RC1 reads of sync. vars | all reads by remote srrsC rrx(V+C)
by remote procs. processors
RC2 writes to sync. vars. | all reads by rem. procs. || swsC rrxV +swx(V+C)
writes to sync. vars
RC3 sync. eveats all reads by rem. procs. || sexC rrxV +sex(V+C)
sync. events
LRC2 || writes to sync. vars. | writes to sync. vars swsC sws(V +C)
LRC3 Sync. events sync. events sexC sex(V+C)
rr: number of reads by remote processors C: overhead for one checkpoint
srr: number of reads of sync. vars by remote procs. V': overhead for one validation
sw: number of writes to sync. vars
se: number of synchronization eveats
Table 2: Address trace characteristics.
program description tot. num. of data reads data writes
references Il total shared total | shared
gravsim({5] | N-body simulator { 92,178,814 || 33,266,880 | 12,484,455 || 6,392,078 | 251,694
fsim[25) fauit simulator 149,918,375 i 50,950,933 | 39,326,911 || 3,958,919 | 999,127
tgen[25] test generator 101,264,382 || 32,613,809 | 16,550,450 | 4,461,880 | 642,796
[pace[d) circuit extractor | 87,861,165 || 23,266,576 | 1,286,787 || 7,842,338 | 348,524
phigure[10] | global router 132,998,231 || 38,244,233 | 4,281,207 || 11,530,981 | 1,876,400

results from simulations based on multiprocessor traces
from five parallel scientific programs running on an Encore
Multimax. The Multimax is a bus-based multiprocessor,
supporting up to 20 processors. The traces are from ex-
ecution on seven processors, and each contain at least 80
million memory references [17, 28]. Table 2 describes the
characteristics of the traces used.

The programs available for tracing were specifically
written for a tightly-coupled multiprocessor environment.
In this environment, interprocessor communication and
synchronization are not as costly as in a distributed shared
memory environment. The programs therefore contain
more synchronization overhead than they would if opti-
mized for distributed shared memory. We therefore expect
an actual implementation to exceed the performance im-
provements predicted by the simulations.

Figure 6 presents the frequency of various events of
interest for the five programs. The overhead under sequen-

tial consistency amounts to one state validation and one
checkpoint per read by a remote processor of a shared vari-
able. Depending on the amount of sharing in the programs,
reads by remote processors represent 400 to 4000 of every
million accesses, or around 2600 on the average. Using
the data-race-free programming model and scheme RC1,
most checkpoints can be eliminated but state validations
still occur on all reads by remote processors. Figure 6
shows that reads of synchronization variables by remote
processors add up to only 50 to 1000 occurrences per mil-
lion references, with an average of approximately 400.

Alternatively, RC2 or LRC2 can be used to take a check-
point after every write to a synchronization variable. Syn-
chronization writes occur more often than reads of a syn-
chronization variable by a remote processor. For instance,
when there is no contention for a lock, it is written twice
(once to lock, and once to unlock) before possibly being
acquired by another processor. Our results show an av-

1000 3

occurrence per million accesses

program

reads by remota processors (block size is four bytes) L]

reads of synchronization vars. by remote processors
writes 1o synchronization variables [|

[synctwonization events -

phigure sverage

Figure 6: Events significant to checkpointing overhead for the five individual programs.

erage frequency of writes to synchronization variables of
about 600 per million references. Implementing synchro-
nization with message passing (RC3 and LRC3) further
reduces the number of checkpoints required. Any writes
to synchronization variables during contention for a lock
are eliminated, and one checkpoint suffices per synchro-
nization event. Figure 6 shows an average frequency of
approximately 500 synchronization events per million ref-
erences.

From the data in Figure 6 it appears more desirable to
checkpoint on every read of a synchronization variable by
a remote processor rather than on every write to a synchro-
nization variable. However, the frequency of reads of vari-
ables by remote processors depends on the implementation
of the distributed shared memory system. Interprocessor
communication usually occurs in blocks or pages. It is
necessary to checkpoint the source after a read by a remote
processor of every block containing a synchronization vari-
able. A larger block size causes different variables to be
transferred between processors as a unit. Spatial locality,
the tendency to reference variables in the same block as
recently referenced variables, might decrease reads by re-
mote processors. However, false sharing, where different
variables in the same block are needed by different pro-
cessors, might increase reads by remote processors. Syn-
chronization variables are not usually accessed as a group,
and therefore have very low spatial locality, False sharing,
with other synchronization variables or with data variables,
therefore increases the number of reads of synchronization
variables by remote processors as the block size gets larger.

Distributed shared memory systems use a wide range of
block size. A typical block size for hardware implemen-
tations is 16 bytes, while a typical block size for shared

virtual memory systems is 4 kilobytes. In Figure 7, the
average frequency of reads by remote processors is plotted
against block size. As expected, false sharing and spatial
locality interact, creating an optimal block size of 64 bytes
to minimize reads by remote processors. Reads of blocks
with synchronization variables by remote processors, on
the other hand, continuously increase from an average of
around 400 per million for four-byte blocks to around 1700
per million for four-kilobyte blocks. But the number of
writes to synchronization variables and the number of syn-
chronization events do not depend on block size. For all
block sizes, except the unrealistic size of four bytes, check-
pointing after writes outperforms checkpointing after reads
by remote processors.

6 Conclusions

In distributed shared memory systems, the overhead
of checkpointing and rollback recovery is increased by
the need to handle rollback propagation. Unsynchro-
nized checkpointing eliminates coordination overhead, but
is costly in the number of checkpoints that are needed to
ensure that the ordering of memory accesses does not vi-
olate sequential consistency. Under relaxed consistency
models, only accesses to synchronization variables need
to be strongly ordered. In this paper, we proposed new
techniques that take advantage of this relaxed model to
reduce the checkpointing overhead. Results from trace-
driven simulations show a five- to ten-fold decrease in
checkpointing overhead over previous techniques that re-
quire sequential consistency.

Lazy relaxed consistency allows delaying interprocessor
communication until absolutely necessary for correct exe-

4000
- === reads by remote processors &
§ —— reads of synchronization vars. by remote processons .~
3000 L @ et wriles to synchronization variables e
g — — synchronization evemts |, _.-=""
Feaael ee=T
i S -
2000
1000
B ek i
0 I k) 1] LI T]
4 16 64 256 1k 4
block size (bytes)

Figure 7: Events significant to checkpointing overhead versus block size.

cution. Updates to shared data can be bundled and transmit-
ted at synchronization points. This decreases the number of
messages exchanged and generates a communication pat-
tern similar to that of explicit message passing. We took
advantage of these properties of lazy relaxed consistency
to reduce the overhead of avoiding error propagation in
systems with unsynchronized checkpointing, We expect
the communication properties of lazy relaxed consistency
to be useful in implementing other recovery algorithms as
well.

Acknowledgements

Lothar Borrmann and the Software Architecture for Par-
allel Computers group in the Systems Architecture Division
at Siemens Corporate R&D, Munich, Germany, suggested
many of the initial ideas on distributed shared memory
used in this paper. At Illinois, Paul Chen, Shyh-Kwei
Chen, Antoine Mourad, and Yi-Min Wang provided useful
comments. Thanks also to Krishna Prasad Belkhale, Mark
Bellon, Randy Brouwer, and Srinivas Patil for the programs
that were traced to generate the simulation results.

References

[1] S. V. Adve and M. D. Hill, “Weak ordering—a new
definition,” Proc. 17thInt. Symp. on Computer Archi-
tecture, 1990, pp. 2-14.

[2] R. E. Ahmed, R. C. Frazier, and P. N. Marinos,
*Cache-aided rollback error recovery (CARER) algo-
rithms for shared-memory multiprocessor systems,”

Proc. 20th Int. Symp. on Fault-Tolerant Computing,
1990, pp. 82-88.

(3] M. Banatre and P. Joubert, “Cache management in a
tightly coupled fauit tolerant multiprocessor,” Proc.
20th Int. Symp. on Fault-Tolerant Computing, 1990,
Pp. 89-96.

[4] K. P. Belkhale, Parallel Algorithms for Computer-
Aided Design with Applications to Circuit Extraction,
Ph. D. Thesis, Tech. Report CRHC-90-15, Univ. of
Illinois, Urbana, IL, Nov. 1990.

[5]1 M. Bellon, “Parallelizing gravitational N-body algo-
rithms on MIMD architectures,” Motorola Urbana
Design Ceater, Urbana, IL.

(6] P. A. Bemnstein, “Sequoia: a faulit-tolerant tightly cou-
pled multiprocessor for transaction processing,” Com-
puter, Vol 21, No. 2, Feb. 1988, pp. 37-45.

[7] L. Borrmann and M. Herdieckerhoff, “A coherency
model for virtually shared memory,” Proc. Int. Conf.
on Parallel Processing, 1990, pp. I1-252-11-25".

[8) L. Borrmann and P, Istavrinos, “Store coherency in a
parallel distributed-memory machine,” Proc. 2nd Eu-
ropean Distributed Memory Computing Conf., 1991
(published by Springer-Verlag as Lecture Notes in
Computer Science No. 487), pp. 3241,

{91 N. S. Bowen, D. J. Pradhan, “Virtual checkpoints:

architecture and performance,” IEEE Trans. on Com-
puters, Vol. 41, No. 5, May 1992, pp. 516-525.

{10] R. J. Brouwer and P. Banerjee, “PHIGURE: a par-
allel hierarchical global router,” Proc. 27th Design
Automation Conf., 1990, pp. 650-653.

{11} J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Im-
plementation and performance of Munin,” Proc. 13th
ACM Symp. on Operating Systems Principles, 1991,
pp. 152-164.

{12] M. Dubois, C. Scheurich, and F. Briggs, “Memory
access buffering in multiprocessors,” Proc. 13th Int.
Symp. on Computer Architecture, 1986, pp. 434-442.

[13] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel,
“The performance of consistent checkpointing,” Proc.
11th Symp. on Reliable Distributed Systems, 1992, pp.
39-47.

[14] B. D. Fleisch, “Reliable distributed shared memory,”
Proc. 2nd IEEE Workshop on Experimental Dis-
tributed Systems, 1990, pp. 102-105.

[15) K. Gharachorloo et al., “Memory consistency and
event ordering in scalable shared-memory multipro-
cessors,” Proc. 17th Int. Symp. on Computer Archi-
tecture, 1990, pp. 15-26.

{16] J. R. Goodman, “Cache consistency and sequential
consistency,” Tech. Report 61, SCI working group,
March 1989 (also available as U. of Wisconsin Dept.
of CS Tech. Report 1006).

[17] B. Janssens and W, K. Fuchs, “Experimental evalu-
ation of multiprocessor cache-based error recovery,”
Proc. Int. Conf. on Parallel Processing, 1991, pp.
1-505-1-508.

18] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy
release congistency for software distributed shared
memory,” Proc. 19th Int. Symp. on Computer Archi-
tecture, 1992, pp. 13-21.

{191 R. Koo and S. Toueg, “Checkpointing and rollback-
recovery for distributed systems,” IEEE Trans. on
Software Engineering, Vol. SE-13, No. 1, Jan. 1987,
pp- 23-31.

{20] L.Lamport, “How to make a multiprocessor computer
that correctly executes multiprocess programs,” /[EEE
Trans. on Computers, Vol C-28,No. 9, Sep. 1979, pp.
690-691.

[21) Y.-H.Lee and K. G. Shin, “Design and evaluation of a
fault-tolerant multiprocessor using hardware recovery
blocks,” JEEE Trans. on Computers, Yol. C-33, No.
2, Feb. 1984, pp. 113-124,

(22] K. Li and P. Hudak, “Memory coherence in shared
virtual memory systems,” ACM Transactions on
Computer Systems, Vol. 7, No. 4, Nov. 1989, pp.
321-359.

[23] R. G. Minnich and D. J. Farber, “Reducing host
load, network load, and latency in a distributed
shared memory,” Proc. 10th Int. Conf. on Distributed
Systems, 1990, pp. 468—475.

[24] D. Mosbergerz, “Memory consisitency models,” ACM
Operating Systems Review, Vol. 27, No. 1, San. 1993,
pp. 18-26.

(25] S. Patil, Parallel Algorithms for Test Generation and
Fault Simulation, Ph. D. Thesis, Tech. Report CRHC-
90-12, Univ. of Illinois, Urbana, IL, Sep. 1990.

[26] R.D. Schiichting and F. B. Schneider, “Fail-stop pro-
cessors: an approach to designing faunlt-tolerant com-
puting systems,” ACM Trans. on Computer Systems,
Vol. 1, No. 3, Aug. 1983, pp. 222-238.

[27] M. Stumm and S. Zhou, “Fault tolerant distributed
shared memory,” Proc. 2nd IEEE Symp. on Parallel
and Distributed Processing, 1990, pp. 719-724.

[28] C.B.Stunkel, B. Janssens, and W. K. Fuchs, “Address
tracing of parallel systems via TRAPEDS,” Micropro-
cessors and Microsystems, Vol. 16, No. 5, 1992, pp.
249-261.

(29] V.-O Tam and M. Hsu, “Fast recovery in distributed
shared virtual memory systems,” Proc. 10th Ins. Conf.
on Distributed Computer System, 1990, pp. 38-4S5.

[30] Y. Tamir and M. Tremblay, “High-performance fault-
tolerant VLSI systems using micro rollback,” /EEE
Trans. on Computers, Vol. 39, No. 4, Apr. 1990, pp.
548-554,

[31] Y.-M. Wang and W. K. Fuchs “Optimistic message
logging for independent checkpointing in a message-
passing system,” Proc. 11th Symp. on Reliable Dis-
tributed Systems, 1992, pp. 147-154,

(32] K.-L. Wu, W. K. Fuchs, and J. H. Patel, “Etror re-
covery in shared memory multiprocessors using pri-
vate caches,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 1, No. 2, April 1990, pp. 231-240.

[33] K.-L. Wu and W. K. Fuchs, “Recoverable distributed
shared virtual memory,” IEEE Trans. on Computers,
Vol. 39, No. 4, Apr. 1990, pp. 460-469.

[34) G. Zorpette, “The power of parallelism,” IEEE Spec-
trum, Vol. 29, No. 9, Sep. 1992, pp. 28-33.

